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"ABSTRACT

The injection or ascent guidance system: that will be used for
space vehicles in the next few vears will nrt have sufficient accuracy
tor advanced lunar or interplanetary missions. It wili be necessary to

have some form of mid-course guidance in order to reduce terminal
dispersions.

This Report is concerned with a specific mid-course guidance scheme
which utilizes a small rocket motor mounted on the spacecraft for small
impulse-type corrections. Magnitude and directions of the correcting
impulse is computed on the ground from radio tracking measurements,
and appropriate commands are transmitted to the probe. The Report
first developed the mat:=matical theory of mid-course guidance. Ter-
minal coordinates are discussed, the concept of the critical plane is
introduced, and the exact computation of the maneuver is covered in
addition to the method of estimating the required amount of rocket
propellant. A thorough error analvsis of the mid-course guidance sys-
tem. is presented. The effects of pointing and shut-off errors of the
rocket motor are determined. A detailed study is made of the errors
associated with the computation of the mid-course correction from
the noisy tracking data. The theory is applied in representative cases,
and many numerical results are shown. o
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I. INTRODUCTION

The injection or ascent guidance systems that will be
used for space vehicles in the next few years will not
have sufficient accuracy for advanced lunar or inter-
planetary missions. Some form of post-injection guidance
will be necessary to reduce the dispersion at the destina-
tion; such guidance may be accomplished by means of
self-contained systems or with Earth-based measurements.

The accuracy of self-contained systems tends to
improve in the vicinity of the destination, and such sys-
tems are not susceptible to hostile “jamming.” However,
the equipment in the spacecraft is much simpler in the
case of Earth-based guidance systems, and jamming is
not considered a menace to NASA space vehicles. Fur-
thermore, long-term studies at the Jet Propulsion Labora-
tory (JPL) have revealed that a system of mid-course
guidance based on radio measurements and command
can provide surprising accuracy for both lunar and
planetary missions. Such radio-command guidance also
takes advantage of the complex of deep-space tracking
sites that are being set up in California, Australia, and
Africa. Such guidance (with relatively simple payload

equipment) has, therefore, been chosen for later space-
craft in the Ranger program both for the Moon and
for the planets.

This Report first develops ihe theoretical strecture of
mid-course guidance. Terniinal coordinates are discussed,
the concept of the critical plane is introduczd, and the
exact computation - ¢ the maneuver is covered in addi-
tion to the method of estimating the required amount of
rocket propellant. In considering the errors of a mid-
course guidance system, a detailed study has been made
of the errors associated with the computation of the orbit
(prior to the maneuver). Radar tracking data are con-
taminated with noise, which naturally degrades the
precision of the orbit determination. The method of
determining the orbit is outlined, followed by the error
analyses that have been applied.

Finally, systems of mechanization are discussed and a
number of representative results presented (e.g., the
required maneuver for a given injection-guidance system
and the accuracy that can be anticipated at the Moon,
Mars, and Venus).

Il. THEORY OF MID-COURSE MANEUVERS

A. Guidance Equations

At this point, it is convenient to assume that the actual
trajectory followed by a vehicle differs only slightly
from some precalculated standard trajectory. Linear
perturbation theory may then be applied to all calcula-
tions dealing with coordinate variations and small
velocity increments (for correcting the trajectory).
Although for most purposes the approximations of linear
pesturbations are good, the theory is invoked more as a
convenience than as a necessary step in the calculations.
The theory is used to carry out first-order analyses but,
where necessary, iterative procedures should be used to
refine the approximations.

If a probe reaches the desired destination point at a
given time t, on the ideal or standard trajectory, then,
because of injection errors, the probe will generally not

reach the same point at time ¢, on an actual trajectory
unless some correction is applied. Let the difference in
the coordinates of position on the standard and the actual
trajectory (in the absence of a correction) be 3x, 3y, and
3z at time t.. It is shown in Appendix A that, in order to
correct the trajectory by applying a velocity impulse with
components V,, V,, and V, at some previous time t,,

8x V.
8 |=—-H|V, (1)
82 [ V: y

where H is a 3 X 3 matrix, the elements of which can be
determined from.computation: on the standard trajectory
for any given t, and t.. Components 3z, 3y, and 3z at time
t, can be computed indirectly from measured data; thus,
the three velocity components necessary for the correc-
tion of the trajectory are determined by Eq. 1. This
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Figure 1. Definition of miss components M, and M,

would, however, guide the space probe to intercept a
given (moving) point in space at the given time ¢,. The
latter restriction would often be unnecessary, since small
variations in the flight tithe may be permissible.

In order to allow variations of flight time, a new set of
rectangular axes is taken (Fig. 1), centered at the probe
position at time ¢, on the standard trajectory. The new
axes are defined by the unit base vectors e, €, and e,,
where e, lies along the probe velocity vector at time ¢, on
the standard trajectory. Since e, is in the xy-plane and per-
pendicular to e, and e,, it completes the set of mutually

. perpendicular base vectors. If, then, R is the vector dis-

placement correspanding to $x, 3y, and 3z at time t,,
three new miss components may be defined:
My=e,8R, M,=e,-3R, M,=¢,*8R  (2)

Assuming that, as a first-order approximation, perturbed
trajectories have the same velocity direction at time t,
then M, and M, are the miss components at some time

-different from t,, and M, is associated ouly with time-of-

flight variations. Thus,

1 {,m, ”, 8x
[z}:,]=[1,m:h,] [:7] 3)

where (,, =2, #,) and (L, m,, n,) are the direction cosines
of e, and e,, respectively. Indicating the 2 X 3 matrix of
Eq.3by N, Eq. 1 can be modified to :

V.

M, r
==-NH|V, 4
[M:] [V, N )

where M, and M, are the miss components perpendicular
to the terminal velocity vector {un the standard tra-
jectory). Other terminal coordinates may, however, be

i

ASYMPTOTE OF
APPROACH HYPERBOLA

S (PARALLEL TO ASYMPOTE}

& (PERPENDICULAR

TO ASYMPOTE) CENTER OF

DESTINATION BODY

r 8-R AND B-T s MISS COMPONENTS

Figure 2. Definition of miss components B-R and B-T.

appropriate to certaiu missions. For example, if the object
of the mission is to impact the Moon at a given spot with-
a given speed, then it woi:ld be logical to choose actual
surface miss cornponents and speed at l.nar impact. Such
coordinates are not, however, defined for trajectories
which miss the Moon; this difficulty may be overcome by
defining impact as the intersection with the plane which
is tangential to the Moon at the standard impact point.
Such coordinates approach the true impact coordinates
for small perturbations.

The terminal coordinates discussed above are linear
functions of small perturbations applied at some earlier
point in the trajectory. However, as a result of the attrac-
tion of the destination body (e.g., the Moon), departures
from linearity occur with large perturbations. For this
reason, another set of terminal coordinates has been
introduced (Ref. 1) and used extensively at JPL, since
they are linear for wide ranges of perturbation variables.
They are defined in Fig. 2. Three mutually perpendicu-
lar base vectors (R, S, and T), are chosen such that § is
parallel to the asymptote of the approach hyperbola.
Vector T is chosen, for convenience, in the xy-plane of
the trajectory computation, and R then completes the
right-handed orthogonal system of axes. Vector B is the
perpendicular from the center of the attracting body to
the asymptote, and the two miss components are defined
asM,=B-Rand M,=B-T. Returning to Eq. 4, M, and
M. will henceforth denote miss components in general,

“but the reader must recognize the fact that the choice of

such coordinates will depend on the particular mission
and calculation. Equation 4 is, in fact, two equations,
which must be satisfied by the three velocity components
(V., V,, and V,) én order that the trajectorv be corrected
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to pass through the desired end point at some unspecified
time.

"The three components have to satisfy only two equa-
tions. There is one degree of redundancy, which may be
used for one of the following:

{1) To minimize the magnituds of the correction

(2) To apply a geometrical ot - #raint to the naneuver

for the sake of practical convenience

{3) To control an additional destination variable such

as speed or time uf arrival

In the first case, let

It is shown in Appendix B that the magnitude of V,, V,,
and V, is a minimum when

KV, +'K,,V,+K,,V,=O (6)
where K ; is th-: cofactor of the element k;,.

Equation 6 defines a plane which always contains the
correcting velocity vector when applied at a given time
t,. The plane is independent ~f injection errors. I* may
be referred to as the most efficient or critical plane, the
normal to that plane being the non-critical direction. The
latter depends on the trajectory and the maneuver time
along the trajectory.

A typical situation is illustrated in Fig. 3, where the
loci of the velocity vector (relative to the Earth) and
the non-critical direction are plotted on a celestial sphere
for different times after injection into a 66-hr lunar orbit.

In practice, it may not be convenient to apply the cor-
rection in the critical plane. Referring to option (2) above,
the correction might be restricted to a plane perpendicu-
lar to the probe-Sun axis. With a rocket mounted at
right angles to that axis, one face of the spacecraft

(carrying solar panels) need not then be turmed away

from the Sun during the mid-course maneuver.

When the rocket thrust vector is restricted to a plane,
critical or othenwise, the velocity components would sat-
isfy an equation of the form

AV, + BV, + V, =0 )

in addition to Eq. 4. To calculate the velocity com-
ponents, a 3 X 3 matrix is formed from the 2 X 3 matrix
NH and a,b,and cof Eq. 7:

— | NH
P= [ab(] (8)
P being a 3 X 3 matrix. Then,

M, V,
[ . _,,[V, o
0 vV,

(177 )
T A=
T
\ w7/

————————— VELOCITY VECTOR (RELATIVE TOEARTH)
NON-CRITICAL DIRECTION

——————— TIME-CRITICAL DIRECTION
{66-hr LUNAR IMPACT TRAJECTORY)

Figure 3. Vectors relevant to the onalysis of
single-impulse mid-course menewvers

vV, A,
]F[M] a0
V. o

which represents three equations specifving the velocity
< mponents (subject to a constraint) in terms of miss
components M, and M, The latter world be obtained
from the computed orbit according to the measured data.

Taking advantage of the degree of freedom revealed
in Eq. 4, the third option would be to control some addi-
tional terminal variable, e.g, flight ttme or speed of
arrival. Thus a 3 X 3 matrix K’ of differential coefficients
can be found, such that

M, v,
My }=-K} V, (1)
R) V.

where § indicates the variation in the speed of arrival.
(The calculations are also the same for ~ariations in flight
time.) The three velocity components are then uniquely

defined by
vV, M,
Vo | = x| e (12)
v, s

/03

and

/0
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and for random errors in the three terminal variables, the
variable-impulse mid-course rocket may have to be fixed

in any direction.

It will be observed that the third row of Eq. 11 would
read:

SoraT = —kLV, — KV, — K, V. (13)

depending on whether speed or flight time was being cor-

rected. It follows that if a maneuver were made in the

plane defined by

Ve + BV, + 8L,V =0 (14)
then the third terminal coordinate (e.g., speed or flight
time) would be unaffected. It also follows that the direc-
tion defined by the components (k% kiz, and k3,) is the
most efficient direction for correcting the third terminal
coordinate, hence the term “time-critical direction”
(plotted in Fig. 3). As the time-critical direction ap-
proaches the critical plane of miss components, it becomes
impossible to correct for miss and flight time, since the
K’ matrix of Eq. 12 approaches singularity. This situa-
tion may be observed near injection in Fig. 3.

B. Calculation of Differential Coefficients

The matrices NH and K’ referred to above are com-
posed of differential coefficients which relate velocity
perturbations at the maneuver point to resulting pertur-
bations in the terminal coordinates; other coefficients
must also be introduced. Although the choice of terminal
coordinates has been discussed, nc mention has so far
been made of the method of calculating such coefficients.
Several possible methods exist:

(1) Direct computation of perturbed trajectories

(2) Solution of the differential equations satisfed by

the differential coefficients

(3) Solution of the adjoint equations

(4) Analytical calculation from conic formulas

Method (1) has been used extensively at JPL. In order
to compute n coefficients, one standard and n perturbed
trajectories must be computed (invariably on an auto-
matic computer). Differential coefficients such as
(eM,)/(8V,) are then approximated by (aM,)/(aV,).
The procedure is simple to apply and, with additional
perturbed trajectories, permits a check on the validity
of first-order approximations. The choice of the size of
the increments is important since, if the increments are

-too large, nonlinear effects appear, and if the increments

are too small, then errors in the trajectory computation
become serious.

In setting up the equations for machine-computation
of trajectories, it is easy to include the differential equa-
tions which the differential coefficients themselves must
satisfy. The coefficients can then be printed out during
the computation of the trajectory itself (Ref. 2). Once
such equations are prog-ammed, this method (now being
employed at JPL) is evidently very fast, although no
check on-linearity is possible.

A similar method is solution of the adjoint equations
(Ref. 3). The differential equations of perturbed trajec-
tories are set up as six simultaneous first-order linear
equations. By transposing the matrix of this set of equa-
tions, another set of six equations (the adjoint set) is
derived. Numerical inteqration of the new set then gives
the differential coefficients along the trajectory. Although
the functions which form the coefficients of the adjoint
equations are available from the ordinary trajectory com-
putation, the method is inconvenient, since the integra-
tion of the adjoint equatioiss has to be in reverse time;
ie., integration starts from the end of the trajectory.
Method (3) has been used only experimentally at JPL.

With reference to Method (4), trajectories can be ap-
proximated by parts of more than one conic. For exam-
ple, a lunar trajectory can be approximated for most of
the flight by an ellipse or hyperbola relative to the Earth;
within 40,000 mi of the Moon, the trajectory approaches
a hyperbola relative to the Moon. Since perturbation

. coefficients can be deduced analytically for such orbits,

the required differential coefficients may be obtained by
appropriate combinations of the coefficients calculated
on the separate conics. So far, this technique has been
utilized merely to provide approximate coefficients, but
refined methods of calculation are being developed.

" C. In-Flight Calculations of the Mid-Course

Maneuver

The calculation of the mid-course maneuver to a first
order of approximation is given in Eq. 10 or 12. However,
if nothing more than such equations were used to com-
pute the required maneuver, then the over-all accuracy
of the guidance system would be degraded unnecessarily.
It is proposed to refine the computation of the following
iterative procedure: :

v, v,]. M,
vo| =lv.| + &)t m (13)
V. Jaar V. ] s

with a similar expression in the case in which only miss
components are to be corrected.

//



For the first iteraiion. M,, M,, and S would be obtained
from the best estimate of the actual trajectory from track-
ing data (Part II1). The first estimate of the maneuver

would be
vV, 0 M,
V,1 =] o + (K°) M,J (16)
V. | o | S b

The trajectory would then be rerun from the maneuver
point with the modified velocity components, the residual
values of M,, M,, and S from the trajectory being sub-
stituted into

vV, V. M,
[ Vv] = [ Vr] + (K)? [Mz] (17)
V. . V. ) AN

the second estimate of the maneuver. This procedure
would continue until the residual terminal coordinates

. were acceptably small (e.g., 2-mi miss at the Moon).

Although strictly speaking, the elements of the K’
matrix should be recomputed for each iteration, pre-
liminary studies have indicated that it will often be suffi-
ciently accurate to apply the K’ matrix of the standard
trajectory.

D. Statistical Calculation of the Required
Maneuver

Since the magnitude of the mid-course maneuver
depenCs on the injection errors and the latter are
describad statistically, a statistical calculation is neces-
sary in order to estimate the required amount of rocket
propellant for the mid-course rocket. The calculation is
given below for the case in which only the miss com-
ponents are corrected, although it is carried out in the
same manner if an additional terminai coordinate is
eontrolled.

From Eq. 4 and 5,

M| Ve
|~ K 5, (18)

If the mancuver is restricted to a plane and the two per-
pendicular velocity components in that plane are u, and
u,, then an orthogonal matrix G can be found, such that

vV, u,
Vo | =G (19)
LVZ #,y

u, being the component normal to the plane and postu-
lated to be zero.
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(][] @

where Q is obtained from KG by simply omitting the
third column.

Hence,

Now, let X be a 6 X 1 matrix of the six injection
errors; then, the resulting miss components are given by

M, = WsX 22
I (22)

where the 2 X 6 matrix W is composed of differential
coeflicients relating injection to terminal coordinates. If
u, and u, are to correct such injection deviations,

I-"J = Q—l 124 3¢ (23)
L=
and by multiplying each side of Eq. 23 by its transpose,

F'H .,

= Q7 WEXSXTWTQ-T - (24)
(T H

Let the six injection errors 83X now be considered as

random variables; the ensemble average of Eq. 24 is

[% ";_” |=Q-‘W(8X8X’) W (25)

But 58X §XT = A is, in fact, the moment matrix of injec-
tion errors; it gives the variances and covariances of those
errors and would be calculated (Ref. 4) from the form of
the injection guidance system. Therefore,

[__ - ] = Q- WAWTQT (26)
MMy wG _
and the mean-squared value of the mid-course maneuver
is

Vet =w+u 27
i.e., the sum of the two diagonal terms of the matrix on
the right side of equation (26).

Now, although u, and u, satisfy a joint gaussian dis-
tribution [assuming that the injection errors satisfy a
six-dimensional gaussian distribution (Ref. 4)], the dis-
tribution of Vuj + 4 is not gaussian, The calculation of
the probability-density function of the magnitude of the
maneuver is given in Appendix C (and the functions are
plotted in Fig. C-1). It is shown that, in order to cope with

/A
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99 per cent of all cases, the maneuver must be N times
the rms valuz (from Eq. 27), where N is a function of
the ratio of the major to minor axes of the dispersion
ellipse of velocity components in the (u,, u,) plane. The
calculations are given in A ppendix C aud some values for
N are given in Table 1.

Tab'e 1. Mid-course maneuver for 99% of all cases

Ratic of majer 1o mir.or axis
of v,u; dispersion ellipse

N, ratio of required monevver
fo rms tnansuver

1 2.4
3 ' 2.52
10 2.58

E. Error Analyscs of Mid-Course Guidance Systems

The sousces of error in a mid-course guidance system
are as follovss:

(1} The orbit is not determined perfectly from radio
tracking.

(2) Angular errors are introluced in pointing the mid-
course rocket.

(3) The magnitude of the maneuver is in error.

Th- precision of orbit determinatior based upon radio
tracking is discussed fully in Part III; cnly the second
and third sources of error are therefore considered here.
In the case in which a mid-course maneuver corrects
terminal miss components and speed, Eq. 11 applies. It
is, however, convenient to use a rotation matrix G to
transform the components (V,, V,, and V,) to the orthog-

onal set (u,, u,, and u,), where u, lies a]ong the non-

critical direction. Thus,

M, oy
[M,] = — (K'G) [a,] (28)
s u,y

The coordinates V, {, and v are introduced, defined by
u, = Vcoslcosy
¥, = Voossinyg (29)
u,=Vsinl

The errors $M,, 8M,, and 8S due to erro=s 3V, 8, and

8y are given by

M,
M, | =
ss

V {— sin{ cos n8{ ~ cos { sin ndn) + 8V cos L cos
= (K’G)| V (— sin{sin n8{ + cos { cos n8y) + 8V cos {siny
Vcosl8 + 8Vsinl

(30)

Let
4y L4 Y
(K'G)=| 4, a,, O (31)
an 4y Ay
(a,s and a,; are zero, since u, is the ncon-critical direction.)
Then, the equation for §M, is
3M, = — (—a,sin{cosp — a,,sin{siny) VL
= (—encos{sinn +a,cos{cosn) V8y (32)
= (4,, cos { cos n + a,, cos { sin ) 8V

The quantity §M3 is required where the errors 3V, 3¢, and
&y are random variables.

The rigorous analysis is beyond the scope of this Report;
instead, in order to arrive at & tractable solution, some

crude averaging procedures are applied; viz., V is treated .

as a constant equal to the average magnitude of the
maneuver, and 8V, 8, and 8n are treated as uncorrelated
errors. The approximation of a maneuver equally likely
in any direction is also introduced. With such approxi-
mations, and after some manipulation of Eq. 32 and the
corresponding equations for §M, and 885,

M+ BMI=A(BVI+ V50 + Vadyn) . (33)

where
A= V[af, + a2, : al, + {‘3'= (34) ’
8ST=pui 3V + V230 + uiV1dyp (33)
where
py = __‘=‘+"if+2¢§. = 36)
m= R 67)

The analysis is carried out similarly, when only the
miss components are corrected.

In addition to errors in applying the maneuver, one
other kind of terminal dispersion is of iuterest. If only
the miss components are corrected, flight-time or speed
variations occur, not only due to injection errors but as

a result of the mid-course maneuver itself. The calcula- . .
tion of such variations is given below, the analysis being

exactly the same in case of speed variations.

Let u, and u, be the velocity components in the plane
used for correcting only miss components (Eq. 21) and
3X the 6 X 1 matrix of injection errors (Eq. 22).

13
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Thus,

) [:‘ ] = wax (38)

Let AT’ be thc flight-time variation due to injection
M,

errors; then,
= w_
— [Wl]sx
AT’

where W, is a1 X 6 matrix. Let AT” be the flight-time
variation due to the maneuver itself:

#,
aAT” = —Q,[y ]

M,
(39)

(40)

where Q, is a 1 X 2 matrix. Then the total flight-time
change is

AT = aT" + AT” = W7, ax—g,["] (1)
N

2

But
“»ll M,
= ]-e[u] @
= WBX
Therefore,
AT = (W, - 0,0 W) 8X
and

AT*=(W,—~ Q. Q" W)A (W, — 0,07 W) (43)

- where A is the moment matrix of injection errors (Eq. 25).

I1l. ORBIT DETERMINATION FROM RADlO MEASUREMENTS

A. Summary

In the radio-command mid-course guidance system,
radio_tracking stations at several locations on the Earth
track the spacecraft along its orbit, measuring quantities
such as doppler shift and tracking angles. Measurements
from different stations are transmitted to a central com-
puting facility which determines the orbit that fits the
measured data with the least-square error. This coasting
orbit can be completely specified by six coordinates at a
given time (for example, three. components of position
and three components of velocity at nominal injection
time). From the measured orbit, the central computer
determines the mid-course impulse required to correct
quantities such as miss components and t:me of flight at
the target. Appropriate attitude and velocity increment
commands are then transmitted to the spacecraft from
one of the tracking sites. Tracking continues after the
maneuver, since the orbit must be redetermined for
evaluation purposes, scientific experiments, and possibly
a retro-maneuver,

- It.can be seen that the radio tracking system and cen-
tral computer effectively close the loop in this guidance
systemn. As in all closed-loop systems, the measurements
_of the controlled quantities are contaminated by noise.
For example, angle-tracking data are subject to random
errors due to receiver noise, which causes jitter in the
antenna servos. Although only a [ew radio measurements
are sufficient to determine an orbit, the accuracy of the
orbit determination is greatly improved by appropriately

smoothing a large number of data points from different
sites, For error analysis of the mid-course guidance sys-
tem, it is necessary to find out how accurately the orbit
is determined from measured data. In this Part, the
tracking system and orbit-determination program are
described. The method of finding the accuracy of orbit
determination is developed, and representative results are
shown in the graphs. Also, the effect of changing various
parameters of the tracking system on the accuracy of orbit
determination is studied.

B. Tracking System

Most of the data for Junar and interplanetary orbit
determination will be obtained from the NASA Deep
Space Net (Ref. 5). As presently planned, the tracking
net will consist of three tracking stations, spaced on the
Earth in such a way that a spacecraft which is at least
several Earth radii from the Earth will always be visible
from at least one station. It is planned that each station
will eventually include a high-gain directive receiving
antenna with accurate positioning servos, a sensitive low-
noise receiver, a transmitter, and a suitable antenna. Also,
there wll be data processing equipment and facilities
for real-time communication of data to the NASA com-
puting and control center. The first Deep Space Net
(DSN) station at Goldstone Lake in California is opera-
tional at the present time. It is planned that the other
two stations will be located in South Africa and Australia
and will be operational in 1963 and 1964, respectively.
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The Goldstone tracking station, which was used in
tracking Pioneer IV, is a prototype of the other DSN sta-
tions. The tracking equipment at Goldstone is described
in detail in Ref. 6. The receiving antenna is a polar-
mounted, 85-ft-diameter, parabolic reflector, which was
originally designed for radio-astronomy research. The
antenna is equipped with an accurate servo-drive system
and uses simultanecus lobing for automatic tracking. The
receiver is a low-noise, 960-mc, narrow-band, phase-
tracking, double-conversion superheterodyne with a data
channel and two angle-error channels. A 10-kw UHF
transmitter with a similar 85-ft reflector but with an
azimuth-elevation mount is located several miles from
the receiver. Pioneer IV was tracked using a one-way
communication link consisting of a stable transmitter in
the probe and the Goldstone receiver. In order to improve
the doppler accuracy and provide a command link, future
communications will be two-way, employing the trans-
mitter and receiver at the tracking site and a transponder
in the spacecraft. The transponder receives the trans-
mitted wave from the DSN station and retransmits an
exact multiple of the received carrier frequency for
dcppler measurements. Information is communicated to
and from the spacecraft by modulation of the carrier.
Hour angle, declination angle, and doppler shift are
obtained from the Goldstone site.

For accurate orbit determination, it is necessary to
obtain tracking data immediately after injection. Because
of the Jow injection altitude (300 mi) and because of high
angular tracking rates, the DSN stations are not able to
track at all desired injection points. For this reason, the
mobile station is located so as to observe the spacecraft
near injection.

The mobile station is similar to the Puerto Rico Down-
range Tracking Station used for tracking Pioneer IV.
Since the mobile station is designed for relatively short-
range communications (100,000 mi), its tracking equip-
ment is somewhat simpler than that of the DSN stations.
For example, the mobile station uses a 10-ft dish rather
than an 85-ft reflector. Elevation angle, azimuth angle,
and two-way doppler are obtained from the mobile
station.

Although the computing center will rely primarily on
the DSN and mobile station, it is expected that data will
also be available from other radio tracking stations. Also,
optical sightings (for example, from a Baker-Nunn satel-
lite camera) ean provide very accurate position fixes
early in the trajectory by photographing the spacecraft
against a star background. However, suchobservations
are dependent on the weather, and the processing time
may be inconveniently long.

" C. Orbit-Determination Program

The radio tracking data are transmitted from the track-
ing stations to the computing center, where they are
processed in the digital computer to determine the orbit
of the spacecraft. The JPL tracking and orbit-
determination program is described in detail in Ref. 2.
Appendix D contains a derivation of some of the impor-
tant equations used in the program. It will be noted that
all of the computations are based on linear perturbation
theory (Ref. 2). The required accuracy is attained by
iterating on the linear solutions. Since a large amount of
tracking data is obtained, some statistical estimation
method must be used to obtain the best orbit from the
redundant data. The program uses the maximum-
likelihood method for estimating the values of the six
parameters defining the coasting trajectory. The esti-
mated values of the injection conditions are corrected by
comparing predicted values of the radio tracking meas-
urements with the actual observed values.

The program accepts angle data (azimuth and eleva-
tion-or hour-angle and declination), range-rate data, and
range data from a number of different stations. The com-
puter corrects the inpuat data for systematic enurs, such
as the refraction correction for angle data. It is assumed
that each type of data is contaminated with gaussian
noise, and that the noise is uncorrelated between stations
and data types. The weighting of the different data types
in determining the orbit can be adjusted according to
engineering estimates of their accuracy. As explained in
Appendix D, this weighting can also be used to take into
account time correlation in each type of data. (When the
effect of time correlation is approximated in this way, the
method of ‘maximum likelihood becomes equivalent to
the method of least-square error.) The program will also
solve for constant bias errors in each type of data, but it
will be assumed here that the data are already corrected
for bias errors, and thus, _the"noise has zero mean.

As shown in Appendix D, an intermediate step in the
determination of the maximum-likelihood estimate of the
injection conditicns is the calculation of the noise moment
matrix of injection conditions J-'. The J-* matrix can be
used to answer many questicns concerning the effects of
radio tracking errors on the accuracy of mid-course
guidance and the requirenients on the tracking net.
Specifically, the following problems can be studied:

(1) The quality of the estimates of miss components
and injection errors as a function of tracking time
after injection

(2) The required accuracy in measuring range rate and
tracking angles to satisfy the mission requircients
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(3) The desirability of measuring range and the re-
quired accuracy
(4) The relative contribution of different stations to

the orbit determination, and thus, the effect of a
station being inoperative due to equipment failure

{5) The effect of geographic location of a station on
the accuracy of the orbit determination

{6) The accuracy of the predicted acquisition coordi-
nates for different stations

(7) The re-establishment of the orbit after a mid-course
maneuver and before a subsequent maneuver, such

as an additional mid-course ‘maneuver or a retro-
maneuver. ‘

The JPL orbit-determination program uses the follow-
ing set of Earth-fixed injection parameters:
r = radius from center of Earth, meters
¢ = latitude, deg
¢ = longitude, deg
v = velocity in coordinate system rotating at Earth’s
rate, meters/sec

v = angle of velocity vector above local horizontal
plane, deg

o = angle of projection of velocity vector on local hori-
zontal plane measured from North, deg

Thus, the noise moment matrix of the uncertainties in
the estimates of the six injection coordinates is (Eq. D-28,
Appendix D)

07 PreT 04 PreO,Te P00y PO, Oy Pro¥a
0% PeeCy0e Py O9Tc PpyTe0y PpoTele

Jr= o Per¥sOr PeyTe0y PecCela
oF PryY?®y Pro9cCo
_ % Pyo%y%e
symmetrical ol
(44)
where

o® = variance in the estimate of a certain initial con-
dition ’
p = correlation coefficient between estimates of two
initial conditions
It is useful to transform the J-* matrix to other coor-
dinates of more direct interest. Let
M, M, aM, aM, aM, aM,

er op o8 2r dy oo
W = (43)
M. M. M, M. M, e M,

r o&p 20 dr 9y oo
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be the matrix-of differential coefficients which transforms
from injection perturbations to miss components M, and
M, at the target. Then, the moment matrix of the uncer-
tainties in miss components is

MMM = WX, (WXL = W[ 'W'T (4
MM, M| u OT=W) (46)

Setting the quadratic form equal to a constant k2,

w8 @

-gives the equation for equiprobability contours. These
contours are ellipses which contain 100 (1 — e %°) per
cent of all possible miss components. Often it is useful
to find the semimajor axis A and the semiminor axes of
the dispersion zllipse, which is done by diagonalizing
Wi wr,

.D. Accdracy of Trocking Data

In order to calculate the accuracy of orbit determina-
tion, it is necessary to make an estimate of the accuracy
of the tracking data from the DSN stations and the mobile
station. These estimates are used to weight the different
types of data in computing the J-! matrix. It is assumed
that the tracking data are corrected for all predictable
and measurable errors. An example of a predictatle cor-
rection is that applied to tracking angles to compensate
for the standard refraction of the atmosphere. A measur-
able error is one which can be determined by calibrating
the equipment in various tests. An example of a measw-
able tyvpe of error is the misalignment between the mechan-
ical and electrical axes of the radio telescope antenna,
which can be determined by boresighting to beacons. After
all predictable and measurable errors are removed, the
remaining errors are random with zero mean. Only the
random errors are considercd in this Part. An example of
a random error is the error in tracking angles due to’
thermal noise in the receiver, which causes jitter in the
angle servos. With each random error, there is associated
a correlation interval or noise period, which can be
defined loosely as the smallest time interval over which
two samples of the nuie are essentially independent. For
example, the angle jitter in the servos due to receiver
noise is essentially independent over time intervals which
exceed the dominant time constant of the angle servos.

It can be seen that each type of tracking data from
each station can be contaminated by seveial independent
noise sources. It is assumed that the noise from each
source can be specified by an idealized autocorrelation
function which has a value of ¢* for 0 < t < v and is zero
for t > 1; o is the variance of the particular kind of noise,
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and 7 is the time interval over which the noise is cor-
related. In other words, it is assumed that the noise is
perfectly correlated over any interval less than r and
uncorrelated over any interval greater than ». In addition,
it has been approximated that o* does not vary with
range. Table 2 shows the assumed characteristics of the
noise in the data for the two types of stations.

Consider first the accuracy of the two-way doppler
measurements. The doppler frequency is approximately

| fo=24f.= (48)
where '

fa = doppler frequency, cps
fo = frequency transmitted by tracking station, cps

v = component of spacecraft velocity away from track-

ing station, meters/sec

« = ratio of transmitted to received frequency in trans-
ponder
¢ = velocity of light, meters/sec

Substitutinga = 1,f. = 960 mc, and ¢ = 3 X 10" meters/sec
in Eq. 48,  is seen that one doppler cycle corresponds
to a velocity of 0.15 meters/sec. It is assumed that the
doppler cycles are counted at the carrier frequency. If
the doppler frequency is counted for n sec, a ane-cycle
roundoff error causes a random error of 1/n cps in f,, and
the corresponding velocity error is 0.15/n meters/sec.
However, as n increases, the error due to neglecting
derivatives of the spacecraft’s acceleration also increases.
It is estimated that the optimum duration for counting
doppler cycles is about 1 sec. Anotler source of random
error in doppler measurements is the unpredictable time
variation of the refraction of the atmosphere and iono-
sphere. The effective path length for the radio waves
depends on the index of refraction along the path in the
atmosphere. A changing index of refraction causes a
changing path length and, thus, produces a doppler shift
which is interpreted as a change in spacecraft velocity.
The changes in refraction are due to turbulence, changes
in water vapor concentration, etc.

During the round-trip transit time of a particular wave
train, the frequency of the transmitter may wander a
small amount from its original value. This wander could
be caused, for example, by a mechanical shock or a slight
change in temperature of the frequency standard. The
frequency drift will be erroneously interpreted as a dop-
pler shift. It is estimated that all of these error sources will
contribute an rms velocity error of 0.15 meters/sec, as
shown in Table 2. The noise period is estimated to be
Jess than 10 sec.

10

As shown in Table 2, there are three noise components
which contribute to angle error. The main cause of servo
jitter is equivalent thermal noise in the angle-error chan-
nels of the receiver. The thermal nuise is due to random
motion of electrons in the sersitive recerver and to energy
radiated from the Earth and sky. This broad-band thermal
noise is filtered by the angle servos, resulting in a noise
period of several seconds. The magnitudes of ¢ and r for
this noise component are determined by direct meas-
urement. Random variations in the refraction of the
atmosphere and ionosphere cause noise in the angle
measurements. This effect is analogous to the twinkling
of visible stars. The value of ¢ is estimated to be 0.01 deg.
These estimates of servo and refraction noise agree rea-
sonably well with autocorrelation functions computed
from 2-hr segments of actual tracking data (Ref. 7).

The very low-frequency noise component is due to
structural deflections of the large tracking antenna. The
antenna and supporting structure are subject to deforma-
tions from varying wind loads and temperatures. As the
position of the reflector is changed, the structure is sub-
jected to varying gravity loads. The bearings and struc-
ture undergo small inelastic deflections. The magnitudes
of ¢ and 7 for this type of error were estimated from
measurements of boresight error taken at 8-hr intervals

during a 6-day period. The length of r is so great for this

error that in some applications it would be regarded as a
bias error. The weighting of the angle data in the J*
matrix is determined largely by the low-frequency noise
component, because of the verv large value of r.

Table 2. Assumed noise charocteristics

Station type Data type Noise source o T, min
Deep Space Net | ronge rote, roundoff 0.18 <0.1¢6
meters/sec | chongihg.
refraction
frequency ]
drift
declinotion, deg | servo jitrer 0.03 <0.6
refractios 0.0 (X 3
onfenno- -0 .
strociure
Jeflections co 300
hour angle, deg | same &
declinotion
Mobile {maxi- range rote, - some 03 ronge rote
mum range, meters/sec - for Deep Spoce Net
50,000 mi}
elevotion ongls, | servo jithor 0.1 <0.16
deg refroction 0.01 05
onlenno-
structure
deflections 0.1 &0
azimuth angle, | some o
deg elevation
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-Figure 4. Miss ot the Moon due to radio tracking errors

E. Resulis

In order to answer some of the questions raised previ-
ously, J-* matrices have been computed for a number of
different tracking situations. These matrices have been
computed using a digital-computer program, which is a
modification of the existing orbit-determination program.
The results from the modified program have been verified
using a scatter-diagram approach with artificial tracking
data.

The results for a lunar trajectory will be described first.
The spacecraft is injected over the South Atlantic Ocean
near Ascension Island. The spacecraft impacts the Moon
66 hr after injection. It is assumed that while the space-
craft is on this trajectory, it is tracked by the mobile
station at Johannesburg, South Africa, and by the DSN
station at Goldstone. The characteristics of the data from
these stations are listed in Table 2. It is assumed that each
type of data is sampled once every 10 sec. Figure 4 shows
the uncertainty in the miss at the Moon due to radio
tracking errors. The abscissa ¢ is tracking time measured
from injection. The ordinate A is the length of the semi-
major axis of the 40 per cent probability ellipse of miss
components at lunar impact. Ir: Fig. 4, the mobile station
tracks from shortiy after injection until the spacecraft
goes out of range at ¢ = 5.5 hr. The data from the mobile
station reduce A to 13 km. Goldstone acquires the space-
craft at t = 12 hr, and data obtained during the first pass
reduce A to 8.2 km. If a mid-c.urse maneuver is made at
son.. time t = ¢,, the radio t:....1ng errors will contribute
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Figure 5. Miss at Venus and Mars due fo
radio tracking errors

an error A(t,) to the over-all miss at the target. It can be
seen from Fig. 4 that the earlier the correction is applied,
the larger the tracking error.

Figure 5 shows the uncertainty in the miss at Venus and
Mars due to radio tracking errors. The transit times on
these trajectories are 108 days for Venus and 177 days
for Mars. The curves in Fig. 5 are not drawn beyond 100
hr since the mid-course maneuver would normally be
made within the first few days. On the Venus trajectory,
the spacecraft is tracked from the mobile station and from
the DSN station at Goldstone for roughly the same time
periods as in the lunar case. However, the results for the
Mars trajectory are somewhat unrealistic in that the orbit
is determined entirely from Goldstone data. There is no
tracking from the mobile -station, since the spacecraft
does not come above the horizon at South Africa until it
exceeds the maximum range of the mobile station. Actu-
ally, for this trajectory, it would be necessary to relocate
the mobile station (in Australia, for example) in order to
obtain early tracking data to predict Goldstone acquisi-
tion coordinates. Of course, the added data would also
imprcve A.

In Fig. 4 and 5, if the angle data from both stations are
omitted, there is a negligible degradation in the accuracy
of orbit determination. The relative accuracy of the dop-
pler and angle data is such that the orbit is determined
almost entirely from the doppler data. If the angle data are
retained and the o in the range-rate data from both sta-
tions is increased from 0.15 meter/sec to 1 meter/sec,
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Figure 6. Accuracy of orbit determination with
mid-course maneuver

A(20) is increased by a factor of about 3.5 for all three
cases. It has been observed in a number of cases that for
accurate orbit determination it is Decessary to obtain
tracking data near injection. The data acquired in just a
few minutes at this time have a very powerful effect in
reducing A. If no data are obtained until several hours
after injection, A may be quite large.

The solid curve in Fig. 6 shows A(t) for a different lunar
trajectory. The spacecraft is injected over Ascension
Island as in the previous case. The spacecraft’s closest
approach to the surface of the Moon (300 mi) occurs 51 hr
after injection. In this case, it is assumed that the range-
rate data from both stations have an accuracy o of 1
meter/sec. The dashed curve in Fig. 8 shows A(t) when
there is a mid-course maneuver. It js assumed that the
mid-course maneuver is made at t, = 9 hr, although this
is not the optimum time. Because of pointing and shutoff
errers in the mid-course guidance system, there will be
some uncertainty in the direction and magnitude of the
velocity vector applied tc: the spacecraft. Using typical
values for these uncertainties, the orbit determination
degenerates at ¢,, as shown by the dashed curve in F ig. 6.
Subsequent tracking reduces A considerably. It may be
necessary to redetermine the orbit quite accurately after
a mid-course maneuver in order to calculate the impulse
for a retro-maneuver or as part of a scientific experiment.

Figure 7 shows the effect on the solid curve of Fig. 8
when range data from both stations are utilized in addi-
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Figure 7. Accuracy of orbit determination with
range dria

. tion to angle and range-rate data. It is assumed for the

range data that ¢ = 10 meters and » < 0.16 min. It can
be seen that range data are very useful in determining
orbits. Cusves similar to those of F ig. 4 through 7 can be
plotted for quantities other than A. For example, the
standard <eviation in injection conditions (the square root
of the diagonal elements of the J-* matrix) can be plotted
as a function of tracking time; or the J-' matrix can be
transformed to other coordinates, such as uncertainties
in time of flight, velocity components at the target, etc.

F. Further Results

Figure 8 shows how the accuracy of orbit determina-
tion on the 51-hr trajectory varies with the magnitude of
the noise on the range-rate data. The ordinate of the
graph is A(20) and the abscissa is the value of o for the
range-rate data, o;. The value of A at 20 hr is chosen
because considerations of fuel economy and component
error indicate that the optimum ¢, is between 15 and 20 hr
for this trajectory. It is assumed that o; is the same for
both stations and that T < 0.i6 min. The noise in the
angle data is the same as that in Table 2. Note that in
Fig. 8, when o; =1 meter/sec, A(20) = 49 km, which
agrees with the solid curve in Fig. 6. As o; becomes larger
in Fig. 8, the range data contribute less to the over-all
orbit determination. The curve approaches an asymptote
A(20) = 1100 km, which is the value of A(20) if only angle
data are used.
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Figure 9 shows the effect of varying the accuracy of
the angle data from each station. The value of o for the
low-frequency component of noise in hour angle and
declination is oe and oa is the value of o for the low-
frequency component of noise in elevation and azimuth.
The curves approach a lower asymptote because of the
other components of angle noise in Table 2. In Fig. 9, it
is assumed that ¢; = 1 meter/sec. If o; = 0.15 meter/sec
had been used, the curves would approach the upper
asymptote for even smaller values of 0. and oa.

It is instructive to consider how the accuracy of orbit
determination is affected by the quantity of tracking data.
Figure 10 shows the uncertainty in the miss at the Moon
on the 51-hr trajectorv as a function of the number of
radio tracking- measurements. The ordinate A is evalu-
ated at t,, which is assumed to be 20 hr after injection.
The abscissa n is the total number of radio tracking
measurements taken in the 20-hr period. A measuremert
is any one observation of doppler frequency or a tracking
angle. Since the total tracking time is constant, n is varied
by changing the interval between measurements.

Curve A of Fig. 10 shows A{20) when the orbit is
determined using all of the types of data listed in Table 2.

MAJOR MISS COMPONENT AT 20 hr, A(20), Km
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Figure 9. Effect of angle accuracy on major
miss component

13




o .

JPL TECHNICAL REPORT NO. 32-28

100 [~ T
o~
N
\\
‘ \\
e . NN [eurve s ~+—
E T -
° Y
«
=
§ 4 CURVE 4 R
- '\\'\\
< \'Q\:
; 10 N\\\\
cil NS
8 /. \\ : R j
S VA NN
8 y,
0 jl
2 a
3 — CURVE C
x
S
o
-3
b]
00 1000

10,000 100000 .

DATA POINTS, »
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It can be seen from Table 2 that the noise contaminating

- the angle data consists of two relatively high-frequency

components and one very low-frequency component. It is
assumed here that the angle data will be smoothed some-
what before being used in the orbit-determination pro-
gram. This will eliminate the high-frequency components,
leaving only the very low-frequency noise. It is useless
to sample the smoothed angle data too frequently,
because the measurements will not be independent. It is
estimated that all of the nseful angle information can be
extracted from 20 samples of the smoothed angle data
taken at egnal intervals over the tracking time. Therefore,
for curve A, n consists of 20 angle measurements; all the
rest are doppler measurements. If a doppler measure-
ment is taken every 10 sec when the spacecraft is visible
from Johannesburg or Goldstone, the total number of
data points is n = 4400. It should be noted that as n
becomes large, curve A approaches an asymptote with a
slope of —3%. Thus, for large n, A(20) is proportional to
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1/V n. This is to be expected, since A(20) is analogous to
the standard deviation of the sample mean.

Curve B shows A(20) vs n when the orbit is determined
entirely from range-rate data. It is assumed that the data
are sampled at equal time intervals whenever the space-
craft is visible from a station, the time intervals being
inversely proportional to n. Curve B is a straight line, with
slope —% over the whole range of n-values shown in
Fig. 10. If curve B were extended to smaller values of n,
however, it would deviate from the straight line.

Comparison of curves'A and B shows that, for small n,
the use of angle data causes a considerable improvement
in A(20). However, for the assumed doppler accuracy and
for large n, only slight improvement in A(20) results.
Before drawing any general conclusions concerning angle
data, it should be remembered that Fig. 10 is drawn for a
particular trajectory. It is possible that the tracking
geometry in certain special cases could result in a require-
ment for angle data in order to resolve ambiguities in the

-



JPL TECHNICAL REPORT NO. 32-28

doppler data and insure rapid cunvergence of the orbit-
determination program.

For curves A and B, it was assumed that the observa-
tions were taken at equally spaced time intervals. Let
r (t) be the range rate from a station as a function of time.
It has been observed that a small change in the orbit will
produce a large change in the functional form of r(t)
during the first part of flight. This suggests that it may be
more efficient to vary the interval between observations
rather than taking observations at constant intervals.
Curve C uses only doppler data, as did curve B. However,
in curve C, the data were sampled at a rate which de-
creased with increasing time. Comparison of curves B and
C shows that the tapered sampling rate results in a smaller
A(20) for the same total number of data points (n).

It might be expected from Fig. 10 that the accuracy
can be improved without limit by increasing n. Such a
conclusion is invalid if all factors are taken into account.
The curves continue to decrease ouly if the contaminating
noise is random with zero mean. This means that the data
must be corrccted for all systematic and bias errors.
Obviously, it is impractical to correct for all of these
errors, and a point will be reached where neglected sys-
tematic and bias errors will limit the accuracy instead of
the random errors. Also, it has been assumed that the
range-rate data are uncorrelated in time. Actually, there
. may be some small noise component in the range-rate
data which is correlated over a finite time interval. For
example, turbulence in the atmosphere can cause local
variations L: the index of refraction which, in turn,
cause variations in the effective path length for the radi-
ation. The changing path length produces correlated
noise in the range-rate measurements. Thus, when n
becomes very large, the samples of range-rate data will
no longer be independent and A (20) will stop decreasing.

There are other practical reasons for limiting the vaiuc
of n. If too many data points are used, the computing
time required for a fit may become inconveniently long.
It is estimated that three iterations using 4400 data points
at each iteration require 3 hr on the IBM 704 digital com-
puter. On the pass in which the maneuver is to be made,
adoquate time must be allowed to acquire additional
tracking data, compute the orbit and correction, transmit
the commands, and cbserve the maneuver. It is conceiv-
able that the limited precision.of computation may cause
the least-square fit to deteriorate if a very large number
of data points is used. However, investigations show that
this effect is negligible up to 8000 data points.

For the interplanetary trajectories, an additional source
of error is the uncertainty in the Astronomical Unit (AU-a

unit of length equal to the mean radius of the Earth’s -
orbit used for measuring distances in the solar system).

In the ephemeris, the positions of the planets are tabu-
lated quite accurately in terms of AU. However, at the
present time there is an uncertainty of the order of one
part in 2000 in the conversion factor from AU to ordinary
length units such as meters. This results in an uncertainty
of 21,000 km in the miss at Venus and an uncertainty of
25,000 km in the miss at Mars when the orbit is computed
from heliocentric injection conditions expressed in ordi-
nary length units. Note that this miss is not a random
variable but rather the upper limit of an unknown con-
stant. However, it is anticipated that the uncertainty in
the AU will be reduced in the near future by tracking of
space probes and radar-ranging to planets. Although there
are corresponding uncertainties in the physical constants
of the Earth-Moon system which would affect the accu-
racy of lunar trajectories, it is believed that these con-
stants will soon be known accurately enough so that they
contribute an error which is negligible compared to other
€errors.

IV. GUIDANCE SYSTEMS

Returning to the subject of mid-course maneuvers, as
distinct from orbit determination, possible schemes of
mechanization are summarized in Table 3.

Scheme 1 (Ref. 8) is especially suited to spinning pay-
loads since, in addition to providing the method of thrust
vector control, the spin provides a direction fixed in space.
However, it is found that to avoid excessiva amounts of
propellant, the first of the two maneuvers must be made
shortly after injection (e.g., 1 to 2 hr on a lunar trajectory).
The orbit would not usually be determined sufficiently

Table 3. Possible mid-course guidance systems

Terminal coordinotes Constraints en
Scheme controlied Impulse rocket orientatien
] Two miss components | Vorioble (twice) | Fixad direction
2 Two miss companents | Voriable Restrictod 0 @
plone
Two miss components Fixed None
4 Two miss components Yariable None
and eithet speed or
time of arrivel ]
15
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by radar-tracking at that time, and also, the spacecraft
may not be visible from the tracking site which has the
command capability. In the early stages of the NASA
space program, only the Goldstone site will have the
command capability, and spacecraft injccted over the
Soull Athantic Ocean are not visibie from that site until
about 11 hours after injection (Fig. 4).

In scheme 2 of Table 3, it was shown that both miss
components can be controlled when the rocket impulse
is restricted to a plane. For a given point on a given tra-
jectory, one plane exists (the critical plane) for which the
maneuver is a minimum; however, the impulse need not
be applied in that plane. In practice it may be convenient
to restrict the maneuver to the plane perpendicular to
the Sun-probe line or the Earth-probe line. Thus, if the
rocket is mounted to fire perpendicularly to the Sun-
probe line, then, in orienting the spacecraft and rocket
for the maneuver, one face of the craft (e.g., the face
carrying solar panels) is never turned away from the Sun.

If the spacecraft and rocket could be oriented in any
desired manner, then scheme 2 (in the critical plane) or
scheme 4 would be employed. The authors have concen-
trated most of their attention on these schemes. Scheme
4 permits the greatest flexibility, since speed or time of
arrival may also be controlled. Subsequent discussions
refer to schemes 2 or 4 of Table 3 for a rorket mounted
rigidly in a spacecraft which can be pointed in any
desired direction by command from the ground.

Except when the mid-course rocket is developing
thrust, attitude control of the spacecraft may be accom-
plished with a system of gas jets for Junar missions; but
for longer interplanetary missions, the addition of Hywheel
control would be desirable. Provided the electrical power
comes from solar panels, the weight of a flywheel system
does not increase with journey time. Further discussion
of such attitude-control systems is, however, beyond the
scope of this report.

The ease of shutting off and restarting liquid-propellant
rocket moto.. makes them attractive for mid-course
maneuvers. Thrust levels can be quite low (50 Ib), and
the lower specific impulses of monopropellants are accept-
able in simplifying the propulsion unit. A separate tighter
form of attitude stabilization would, however, be required
during burning of the rocket, e.g., gimbaling the rocket
motor. Shutoff of the motor would be dependent upon
the integrated output of an accelerometer, mounted with

- the sensitive axis parallel to that of the thrust vector.

Apart from tracking considerations (Part 111 ), the choice
of T (the time of application of the maneuver) is influ-

eaced by the magnitude of the correction 2s a function
of T, and the effect of errors in applying the maneuver
(e.g., in pointing the rocket). The calculation of the mag-
nitude of the maneuver was presented in I1-D, the result
being dependent on the relative values and cross-
correlations of the injection errors. However, it is interest-
ing to note in Fig. 11, where the mid-course maneuver to
correct one-at-a-time injection errors is plotted against T
for a lunas impact trajectory, that whereas some injection
errors should be corrected as early as possible, the opti-
mum time for correcting other errors is some time after
injection. It follows that the optimum maneu ser point
depends on the particular injection-guidance system.,

U
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Figure 11. Mid-course maneuver to correct
injection errors :

By way of illustration, the rms magnitude of the mid-
course maneuver is plotted against T in Fig. 12 (for the
Agena guidance system as used for Discoverer missions).
The calculations for this graph employed the statistical pro-
cedures presented in Fig. 2. The graph shows two curves:
One refers to the correction of miss components only and
the other to the correction of miss components and flight
time. In the event that only miss components are cor-
rected, the corresponding variations in Junar impact speed
and flight time are given in Fig. 13 (calculated by Eq. 43).
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Figure 13. Variation of flight time and impact speed
when only miss components are corrected by a
maneuver in the critical plane (trajectory ond
guidance as in Fig. 12)

In estimating the effects of errors in applying the
maneuver, the authors have, in the final analysis, resorted
to evaluating upper bounds of the errors (from Eq. 30).
However, in preliminary studies it is much more con-
venient to use the approximate formulas derived in II-E.
Statistically averaged coefficients were deduced which
relate errors in the direction and magnitude of the ma-
neuver to miss at the destination. These coeflicients are
plotted in Fig. 14 and 15 against application time of the
maneuver for a 66-hr lunar-impact trajectory. The maneu-
ver implied would be to correct miss components and
speed at the Moon. Fig. 14 shows the coefficient A of

JPL TECHNICAL REPORT NO. 32-28

Eq. 34 expressed in two different sets of units for con-
venience of interpretation, it being the factor for errors
in magnitude or direction. Fig. 15 shows the coefficients
o p, and uy of Eq. 36 for estimating the terminal speed
errors, the mid-course maneuver being one which controls
speed at the destination.
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V. CONCLUSIONS

Radio-command mid-course guidance is regarded as
having great potential for future lunar and interplanetary
missions. It is suitable for ensuring impact on a small, pre-
selected area of the surface of the Moon for guidance
prior to the creation of a lunar satellite, and for sending

~a’recoverable space probe around the Moon and back to

Earth. Futbermore, provided the measure of the Astro-
nomical Unit is improved, such guidance will ensure
approaches within 10,000 mi of the planets Mars and
Venus,

Examination of Fig. 11 through 14 reveals that unless
the maneuver is made within the first hour after injection
(and this would not usually be possible) the choice of the
maneuver point is not critical. It can be made within the
first 100,000 mi of a lunar flight or the first few million
miles cf an interplanetary flight.

It is perhaps instructive to quote estimates of the
accuracy that might be achieved with a single-impulse,
radio-command, mid-course guidance system. Illustrative
results are presented in Table 4.

Tahle 4. Representative figures for the accuracy of mid-course gvidance (rms quotations of arrors)’

" . Or'bit " Coefficiont Assumed Miss Costficient Assumed Miss Yotel
b deter mi/ft/sec error i mi/deg errer i miss
miss, mi ft/sec deg -
Moor, 7 22 1 22 3 s 19 k]
Mars 1500+ 3570 1 3570 6230 oS amns 5000
Yenus 700°* 1970 1 1970 3420 0s 1718 2700
*Correction in the citical plane for miss components only,
It is assumed that the uncertainty in the Astrenomical Unit will be reduced in the neor future by more thon one order of mognitude (Ref. 9). Otherwise, the miss
at Mars ond Yenus would be of the order of 15,000 mi {for 1 in 2000).

APPENDIX A
Correcting Velocity Components

The coordinates x,, y, and z, on a ballistic trajectory
at any time ¢, are functions of the coordinates z,, y,, z,,
%1, 41, and %, at any previous time t,. Hence, by taking
only the first-order terms of a generalized Tavlor expan-
sion,

_ 9,

ox, ox, 0x, . .
= =2 —2 + =2 + =2
8x, al8x,+al87, alsz, 8',8x'+

ax,
9y,

(A1)
and, similarly, for 8y, and 3z,, where the perturbations
are to be interpreted as coordinate variations from &
standard trajectory. In addition to the six cco: dinnte per-

18

ox -
o 40Xz g
L2 _82, 8z,

turbations at time ¢#,, let a further perturbation be added
in the form of an impulse of velocity with components
Vs Vy, and V,, such that

ox. ox. ox .
= - -— — .
8x, —-13’.‘! vV, ——!ajl v, %, V. (A-2)

and, similarly, for 3y, and 8z,. The net result will then be
that 8x, = 8y, = 8z, = 0, since the applied velocity per-
tirbation will exactly cancel the effects of the six coordi-
nate variations at time ¢t,. Equation 1 is a statement of this
result in matrix notation.

-
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APPENDIX B

Minimization of the Magnitude of the Maneuver

Equation 4, written out in full, is

~M, =4,V + &, V,+4&,V,
~My= b,V + bV, + h,V,
where V,, V,, and V, are to be chosen to minimize
Vi+Vi+vs
subject to the two equations. The problem is solved by
analogy with the problem in three-dimensional geometry
of calculating the vector (drawn from the origin) perpen-
dicular to the line of intersection of the two planes
" defined in Eq. B-1, regarding the velocity components as
rectangular coordinates.

The normals to the two planes of Eq. B-1 have direc-
tion cosines proportional to ki, ki, ki, and ks, ks, ks,
respectively. The line of intersection of the two planes
has direction cosines proportional to

(B1)

(ikyy + jhyy + kbyy) X (ikyy + jhyy + kby,)  (B-2)

and the vectors iV,, jV,, and &V, the magnitude of which
is a minimum, must be perpendicular to the vector of
Eq. B-2. Hence,
(Ve + iV, + AV,) [ (ik,, + jb,y + kk,,)
X (ks + jhyy + kb)) =0 (B-3)
The scalar triple product of Eq. B-3 can be written

APPENDIX C

Probability-Density Function of the Magnitude of the
: Mid-Course Maneuver

If the fundamental error sources during boost gui.ace
are gaussian, then the six injection errors satisfy a six-
dimensional gaussian distribution, and the velocity com-
ponents u, and u; of II-D satisfy a two-dimensional
distribution (Ref. 4).

Let —_—
s wmu, | | a b
EXI0HN

Then the probability of the velocity components being
between u, and u, + du,, and u, and u, + du, is

po {3 w][0 T[]
(€2)

By an appropiiate rotation of the u,, u, axes, the
moment matrix may be diagonalized, such that

(c1)

_dvd () .
P"zﬂ,x,"“’( 223 u;) (C3)
where
a—-b\
Al=3{a+b)+ —=) +&
(C4)

A=+ 8-

(3

bll ‘l' ‘ll
by, ky, by | =0 (8‘4)
. Ve V, V. '
or
KnVe+KuV,+KuV, =0 (B-5)
where K;; is the cofactor of the element k; 4
Now let
#, = ucos 6 }
&, = wsin@
Then
e R I

and the probability of the maneuver being between u and
u+duis

w xdy [** st fcos*®  sinté
P /.P"” M.AJ. ”‘P[ 2(15 MY )]

i (C6)
= hnep| - Lo+
j: exp [%(xy = Xi%)cos 260 |48 €7

— __’. ‘-’ -2
._-——l cpr (A; + A3 [ cxp(xcos¢)d¢
where

T
x= T(Az A3 ) (C—9)

and
é=20
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The integral in Eq. C-8 is a Bessel function whlch is
tabulated (Ref. 10)

wdu
Pe= “P["

For convenience, substitute

*:
(C-11)
”n= A (n>1)
Ay

n being the ratio of the major to minor axis of the dis-
persion ellipse in the u,, u; plane.

The prebability-density function is then:

ydy cxp[ ~ i+ n")] L9 (C12)
where
x= -? (n—m)

This function is plotted in Fig. C-1 for three different

values of n. The mean-square maneuver is

W=, _[ °¢=ap[ - ”’7' (n+ rr’)] Jolix)dy  (C-13)

Let u, be the maneuver which includes 99 per cent of
all cases. Then,

001 = /';rn sbexp[ L+ r-)]/o (ix)dy (C-14)

Zos+ 39| R €10
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Figure C-1. Probability-density functions of the
" magnitude of a mid-course maneuver when
restricted to a plane

By evaluating numerically®* the integrals (C-13) and
(C-14), the ratio

% (C13)

bhas been calculated for three different values of N
(Table 1).

APPENDIX D
Computation of the Orbit From Radio Tracking Data

The coasting orbit is completely specified by the injec-
tion time and six injection parameters. The six injection
parameters are denoted by X;, where j=1, 2,...6.
One possitle set of injection parameters was defined in
ITI-C. Since the orbit is completely specified by the X,s,
so is any observation of the orbjt by an Earth-based radio
tracking station. Let y be any one measurement along the
orbit (e.g., range rate from a certain station). 'I‘hen,

fi (Xu X, xo' ’) (D‘l)

where ¢ is the ﬁme' of observation. By the Taylor expan-
sion, neglecting second- and higher-order terms,

Nlim J, (&) = =
t ad ] ; 4

20

ofs
a Xl T 8XI (D'z)

where the subscript S refers to the value on the standard
trajectory and 38X, = X; — X, is the perturbation in the
injection conditions. From Eq. D-2,

i = f‘ (xw» Xag v+ + Xes;

3_% =%~ yu= ;-. ax’
Equation D-3 is rewritten, using matrix notation

27 2

2 3 4 L] ¢ 14 ] ] 0

L3, (D-3)

7
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where

I

X, (&3)

]

and

(D-6)

Note that U; is evaluated at the time when the ith obser-

vation is made.

The use of linear perturbation theory is justified for
-approximate calculations, because the injection guidance
is accurate enough to inject the spacecraft on.a coasting
orbit which is close to the standard trajectory. Where
extreme accuracy is required, linear perturbation theory
can be used to obtain successive approximations for an
exact iterative solution. : o

Now, let 3y be a column vector of all measurements «2
any type of data from any station. Suppose that the total
number of measurements is m and, therefore, i =1, 2,
...m. Equation D-4 becomes:

8y = UsX (D-7)

where 3y is now an m X 1 column vector and U is now
an m X 6 matrix of differential coefBcients. Vector 3¢
represents the coordinates that would be measured by
perfect instruments. Actually, the measurements are con-
taminated by noise, and the coordinates 8¢ are observed
where

=8 +N (D-8)
where
N=[N,
N,
) (D-9)
N.

N being the noise component on each measurement. It is
assumed that ¢ is corrected for all systematic and bias
errors,

It is also assumed that these noise components are
associated with a multivariate gaussian distribution with
probabiity-density function.

1

vV (2=)= IK]

p(N)= exp(—3N'K*N)  (D-10)

where K is the noise moment matrix of all m measurement
errors. Substituting Eq. D-8 into D-10,

1
N) = —=——exp [~ 3 (8¢ — 8¢)7 K- (3¢ — 3y)]
PN = i o [ 8~ der K
(D-11)
Computation of §X by the method of maximum likelihood

(Ref. 11) consists of maximizing p (N) or, what amounts = -

to the same thing, minimizing:
(3¢ —~ 8y)T K- (3¢ — 3y (D17}

Differentiating Eq. D-12 with respect to 3X,, and setting
the result to 0,

) P _ -
s [(3 = 39 K (3¢ - 3]
— UT, K- (8¢ — USX) — (8¢ — USX)TK- U,, = 0
. (D-13)
where U, is the first column of U and thus, en m X1
column vector. Simplifying Eq. D-13, »
UT, K- USX + 8XTUTK- U,, = UT, K- B¢ + 88T K- U,
(D-14)
Equation D-12 is differentiated with respect to each of the
other injection perturbations, and the result is set equal
to zero to obtain five more equations similar to Eq. D-14.
Combining all six of these equations into one matrix’
equation,
UTK-USX + [8XTUTK-+U]T = UT K- 8 + [8¢T K U]*
(D-15)
Since K- is symmetrical,
[U"K2UJT"=UTK*'U and [KUJr=UTK"
Equation D-2S becomes
UTKAUSX =UTK- 8¢

3X = UTK- 8¢ (D-16)

(D17)

Equation D-16 gives the solution for the ‘maximum-
likelihood estimate of the injection perturbations in terms
of the measured coordinates.

The K-matrix in Eq. D-17 is the moment matrix of the
noise in all m radio tracking measurements. Thus, K is an
m X m symmetrical matrix, where m is the total number
of measurements and may be as large as several thousand.
Such a high-order matrix wouid in general be very diffi-
cult to invert. However, as will be shown, the K-matrix in
this problem can be approximated by a diagonal matrix.

where
J=UTksU

2 2
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Let K, be the element in the rth row and cth column of
K. When r = ¢, K, is the variance of the rth measure-
ment; otherwise, K,. = K., is the covariance between
the rth and cth measurements. If the rth and cth measure-
ments are observations of the same variable at different
times, then K,. is the value of the autocorrelation func-
tion between the two times; otherwise, K, is the value of
the cross-correlation function between the two times.

It is assumed that there is no correlation between
measurements at different stations and between measure-
ments of different types at the same station. Because of
the assumption of no cross-correlation, it is possible to

“partition K into a diagonal matrix of submatrices. Each
submatrix K, is the nois: moment matrix for the pth type
of data from the gth station. Each U is also partitioned
into submatrices U,,, which contain differential coefB-
cients for the pth type of data from the gth station. Thus,
Eq. D-17 becomes

J=UTK"U=3 ULKaU,, (D-18)
».q
where J is now the sum of a number of elementary
I-matrices, one for each type of data from each station.

With some further assumptions, K,, can be approx-
imated by a diagonal matrix. It is assumed that each type
of data from each station is contaminated by n independ-
ent noise sources. Each noise source is assumed to have
the following idealized autocorrelation function:

R.(t) =0} foro=t=,,

D-1
R.(f) =0 fors > T ( 9)

That is, the noise is perfectly correlated over an interval
7« min and is uncorrelated over any larier interval.
Assume that the data are sampled at equal time intervals
at a rate of f. samples per minute.

s = f.f. if f.-r.él
Tl iffae<t

Where £, is the number of depcndent samples in one cor-
relation interval. It can be shown that if the elements of
U,, change siowly from one sample time to the next
(i.e., there are many samples), then

UnKg Uy =G UL Uy,

(D-20)

(D-21)
where

Coo=(ZorSn (D-22)
The weighting factor C,, takes into account the magni-
tude and time correlation of the different noise compon-
ents. For example, if there is only one contaminating noise
source, C = (¢*S)-%, and S samples of the data must be
taken to have the same weight as one sample of variance
o* if the noise were uncorrelated.

22

It can be seen that by using Eq. D-18, D-21, and D-22,
the K-matrix has been approximated by a diagonal matrix.
The elements on the diagonal are C,%. In the JPL orbit-
determination program, the J-matrix is actually calculated
as follows:

I= ST ULV,

The U, matrix is the 1 X 6 row vector defined in Eq. D-5,
where f; is now the ith observation of the pth type of data
from the gth station. The term in brackets in Eq. D-23 is
equal to U [, U,,. Once K- is approximated by a diagonal
matrix, the method of maximum likelihuod becomes the
same as the method of least squares. The important differ-
ence is in the weighting functions, which account for the
correlation iu the noise. Thus, using least-square fitting,
the expression to be minimized is

E* = (8¢ — 8y)T K- (8¢ — 8y)

where K-! is diagonal with elements C,..

(D-23)

(D-24)

To attain the required accuracy in determining 8X, the
following iterative procedure is used. The injection condi-
tions on the standard preflight trajectory are used for the
first iteration. For the second iteration, the preflight
standard injection conditions are corrected according to
the §X,’s obtained by solving Eq. D-17 in the first itera-
tion. The procedure is repeated nntil the 8X,’s are negli-
gible. It is assumed that the preflight standard is close
enough to the actual trajectory so that the method will
converge. Normally, sufficient accuracy is attained with
3 or 4 iterations.

It will now be shown that the 8 X 6 symmetrical
matrix J-! specifies the uncertainty in orbit determination
due to tracking errors. Substituting Eq. D-8 into D-16,

EX =] UTK- 8y + [NUTK-N  (D-25)

The second term in Eq. D-25 is the uncertainty in $X due
to noise on the measurements. Let this term be 3X,:
X, =] UT KN |

Then, ‘

38X, 3XT = J"UT K- NNTK-TUJ""  (D-27)

Taking the ensemble average of Eq. D-27, noting that
NNT = K, and using Eq. D-17,

8X, 8XT = | (D-28)

That is, J- is the noise moment matrix of the uncertainties
in determining the injection conditions. It depends on the
differential corrections and on the statistical characteris-
tics of the noise contaminating the radio tracking data.
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